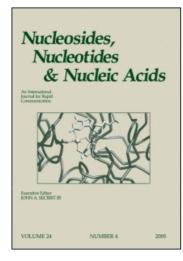
This article was downloaded by:


On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

Building Blocks for Polyamide Nucleic Acids: Facile Synthesis Using Potassium Fluoride Doped Natural Phosphate as Basic Catalyst

A. Alahiane^a; M. Taourirte^a; A. Rochdi^a; N. Redwane^a; S. Sebti^b; J. W. Engels^c; H. B. Lazrek^a
^a Laboratoire de Chimie Bioorganique, Faculté des Sciences Semlalia, Universite Cadi Ayyad,
Marrakech, Maroc ^b Laboratoire de Chimie Organique Appliquée, Faculté des Sciences BenM'Sik,
Université Hassan II, Sidi Othmane Casablanca, Maroc ^c Institute of Organic Chemistry and Chemical
Biology, Johann Wolfgang Goethe University, Frankfurt am Main, Germany

Online publication date: 04 February 2003

To cite this Article Alahiane, A. , Taourirte, M. , Rochdi, A. , Redwane, N. , Sebti, S. , Engels, J. W. and Lazrek, H. B.(2003) 'Building Blocks for Polyamide Nucleic Acids: Facile Synthesis Using Potassium Fluoride Doped Natural Phosphate as Basic Catalyst', Nucleosides, Nucleotides and Nucleic Acids, 22: 2, 109-114

To link to this Article: DOI: 10.1081/NCN-120019491 URL: http://dx.doi.org/10.1081/NCN-120019491

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS Vol. 22, No. 2, pp. 109–114, 2003

Building Blocks for Polyamide Nucleic Acids: Facile Synthesis Using Potassium Fluoride Doped Natural Phosphate as Basic Catalyst

A. Alahiane, M. Taourirte, A. Rochdi, N. Redwane, S. Sebti, J. W. Engels, and H. B. Lazrek,

¹Laboratoire de Chimie Bioorganique, Faculté des Sciences Semlalia,
Universite Cadi Ayyad, Marrakech, Maroc

²Laboratoire de Chimie Organique Appliquée, Faculté des Sciences BenM'Sik,
Université Hassan II, Sidi Othmane Casablanca, Maroc

³Institute of Organic Chemistry and Chemical Biology,
Johann Wolfgang Goethe University,
Frankfurt am Main, Germany

ABSTRACT

Potassium fluoride doped natural phosphate, inexpensive and environmentally friendly catalyst, is shown to be an efficient basic catalyst for the N1/N9 alkylation of different nucleobases as synthons for PNAs.

In 1991, Nielson et al.^[1] developed a new class of oligonucleotide analogues known as Polyamide (or Peptide) Nucleic Acids (PNAs) in which the entire sugar phosphate backbone has been replaced by a peptide-like backbone. These oligomers

109

DOI: 10.1081/NCN-120019491 Copyright © 2003 by Marcel Dekker, Inc. 1525-7770 (Print); 1532-2335 (Online) www.dekker.com

^{*}Correspondence: H. B. Lazrek, Laboratoire de Chimie Bioorganique, Faculté des Sciences Semlalia, Universite Cadi Ayyad, Marrakech, BP2390, Maroc; E-mail: hblazrek@caramail.com.

110 Alahiane et al.

Scheme 1.

of nucleobase are derived from N-(2-aminoethyl) glycine which recognize and bind strongly to specific DNA or RNA sequences. [2] These characteristics make them potentially and extremely useful as an antisense or antigene drug. [3]

The application of inorganic solid acids as heterogeneous catalysts for organic synthesis is an area of intense research. Silica gel, alumina, montmorillonite, zeolite and natural phosphate have been shown to function as effective catalyst for liquid-phase organic transformations.^[4] The advantages of these heterogeneous catalysts over the homogeneous systems include stability, ease handling, lack of corrosion and other environmental hazards, and ease of recovery and regeneration.

We have shown recently that natural phosphate is a new Lewis acids catalysts for 1,3-dipolar cycloaddition^[5] and for acyclonucleoside synthesis.^[6] In continuation of our program on the use of natural phosphate as catalyst and in the search of an alternative strategy which would open the way to a combination of PNA and oligonucleotides synthesis, we have developed a new and easy synthesis of the PNA precursor (ethyl acetate-nucleobase) using a cheap KF doped natural phosphate as a basic catalyst (Sch. 1, 2, 3).

The use of potassium fluoride on alumina (KF/Al₂O₃) as a base for functionalization of amide and N-alkylation, has been described in the literature.^[7] In order to assess influence of natural phosphate doped with KF as basic catalyst on the synthesis of ethyl acetate-nucleobase derivatives, a number of experiments were performed to optimize reaction conditions. Results of these studies, are summarized in Table 1.

Both KF and NP/KF (175/25) had a weak catalytic activity (entries 1 and 2). When the amount of NP/KF was increased (350/50), the reaction yield was tripled

$$R_1$$
 + BrCH₂CO₂Et R_3 CN/ Δ

1b: $R = CH_3$, $R_1 = OH$ **2b**: $R = CH_3$, $R_1 = OH$
1c: R = H, $R_1 = NHBz$ **2c**: R = H, $R_1 = NHBz$

Scheme 2.

 $1d: R_2 = NHBz, R_3 = H$ $2d: R_2 = NHBz, R_3 = H$
 $1e: R_2 = OH, R_3 = NHAc$ $2e^*: R_2 = OH, R_3 = NHAc$
 $1f: R_2 = OCO(Ph)_2, R_3 = NHAc$ $2f: R_2 = OCO(Ph)_2, R_3 = NHAc$

 *: 2e = N-9 isomer; 2e' = N-7 isomer

Scheme 3.

Table 1. Catalyst influence on the N-alkylation of uracil.

Entry	Catalyst	Weight ratio (mg/mg) ^a	Time (h)	Yield (%)b	
1	KF	50	10	28	
2	NP/KF	175/25	2	15	
3	NP/KF	350/50	1.5	50	

^aThe amount of catalyst used in reactions with 100 mg of uracil.

(entry 3). The reaction was monitored by thin layer chromatography, and it was stopped when the N1,N3-bisalkylated product appeared. This procedure appears to be regioselective and gives only the N1 isomer for uracil (Sch. 1).

To expand the scope and the synthetic utility of this reaction using NP/KF (350/50), we next examined the N-alkylation of other nucleobases under similar conditions (Sch. 2, 3 and Table 2).

The poor solubility of unprotected nucleobases (cytosine, adenine and guanine) excluded their use in most reactions. Introduction of a protecting group was necessary to increase the solubility of these bases.^[8,9]

Table 2. Alkylation of different heterocyclic bases.

Entry	Heterocyclic base		Time (h)	Yield (%) ^a
1	Uracil	1a	1.5	50
2	Thymine	1b	2	55
3	4-N-Benzoylcytosine	1c	1	60
4	4-N-Benzoyladenine	1d	4	50
5	2-N-Acetylguanine	1e	4	43 ^b
6	2-N-acetyl-6-O-(N,N-diphenylcarbamoyl)guanine	1f	3	70°

^aPurification by silica gel chromatography.

^bPurification by silica gel chromatography.

^bN9/N7: 60/40 yield ratio.

^cN9/N7: 95/5 yield ratio.

112 Alahiane et al.

These protected nucleobases were alkylated to give the desired N1-alkylated pyrimidines (entries 1–3) and N9-alkylated purines derivatives along or with other regioisomers (entries 4–6). It was reported that 6-O-(N,N-diphenylcarbamoyl) protected guanine 1f has been reported to undergo alkylation with high regioselectivity to give in some cases 99/1 ratio in favour of the N9 regioisomer. [9]

Interesting, we found that the 2-*N*-acetyl 6-*O*-(*N*,*N*-diphenylcarbamoyl)guanine **1f** (Sch. 3) when reacted with ethyl bromoacetate in the presence of NP/KF afforded a nearly 95/5 ratio of N9/N7 isomers in 70% yield (entry 6, Table 2).

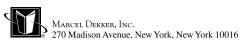
All compounds were characterized fully by spectroscopic and elemental analyses, which were found to be in accordance with the proposed structures. [8] In conclusion, we showed that our method, in general, provides the desired ethyl acetate-nucleobases in yields comparable to those reported in the literature using basic conditions.

On the other hand the use of KF doped natural phosphate as basic catalyst provides a significant new and effective method for the environmentally compatible and practical synthesis of these derivatives.

EXPERIMENTAL

The ¹H NMR spectra were recorded using a Brucker AC 250 MHz spectrometer DMSO-d₆ was used as a solvent and internal reference. Mass spectra (MS) were obtained with JEOL JMS DX 300 instrument using fast atomic bombardment (FAB⁺). Thin layer chromatography was performed on plates of kieselgel 60 F254 (Merck) and short-wave ultraviolet light (254 nm) was used to detect the UV-absorbing spots. Column chromatography separation was carried out on silica gel (0.063–0.2 mm Merck).

For the preparation of natural phosphate see Ref.^[4c]


Preparation of Doped Natural Phosphate

350 mg of natural phosphate and 50 mg of KF were mixed in 10 mL of water and evaporated to dryness and dried for 6 h at 150°C. The obtained solid residue was used as basic catalyst in alkylation reactions.

General Procedure

A typical experimental procedure is described for uracil. To a mixture of uracil (100 mg, 0.892 mmol) and ethyl bromoacetate (2 eq) in dry acetonitrile (12 mL) was added NP/KF (350 mg/50 mg). After stirring for 1.5 h at reflux, the mixture was filtered and the filtrate was concentrated in vaccuo. Purification of the residue by flash column chromatography gave N-1 (ethyl acetate) uracil (80 mg, 50%) as a white precipitate.

1-(Ethoxycarbonylmethyl)uracil 2a. Yield: 50%, Rf = 0.62 (CHC1₃/MeOH) (90/10, v/v), ¹H NMR δ: 11.4 (s, 1H, NH-3); 7.65 (d, 1H, H-6, J=7.8 Hz); 5.65 (d, 1H, H-5, J=7.8 Hz); 4.55 (s, 2H, NCH₂); 4.17 (q, 2H, COOCH₂CH₃); 1.23 (t, 3H, COOCH₂CH₃). MS (FAB⁺, GT) m/z 199 [M+H]⁺.

- **1-(Ethoxycarbonylmethyl)thymine 2b.** Yield: 55%, Rf = 0.70 (CHC1₃/MeOH) (90/10, v/v), ¹H NMR δ : 7.21 (s, 1H, H-6); 4.40 (s, 2H, NCH₂); 4.20 (q, 2H, COOCH₂CH₃); 1.90 (s, 3H, CH₃); 1.25 (t, 3H, COOCH₂CH₃), MS (FAB⁺, GT) m/z 213 [M + H]⁺.
- **4-N-benzoyl-1-(Ethoxycarbonylmethyl)cytosine 2c.** Yield: 60%, Rf = 0.81 (CHC1₃/MeOH)(90/10, v/v), ¹H NMR δ: 11.25 (s, 1H, NHBz); 8.12 (d, 2H, o-H benzoyl); 8.0–7.34 (m, 5H, H-5 and H-6; m,p-H Benzoyl); 4.64 (s, 2H, NCH₂); 4.15 (q, 2H, COOCH₂CH₃); 1.20 (t, 3H, COOCH₂CH₃), MS (FAB⁺, GT) Mass spectrum FAB⁺ (GT) m/z 304 [M + H]⁺.
- **6-N-(Benzoyl)-9-(Ethoxycarbonylmethyl)adenine 2d.** Yield: 47%, Rf = 0.51 (CHC1₃/MeOH)(90/10, v/v), ¹H NMR δ: 11.24 (s; 1H, NHBz); 8.80 (s, 1H, H-2); 8.50 (s, 1H, H-8); 8.10 (d, 2H, o-H Benzoyl); 7.70–7.58 (m, 3H, m,p-H Benzoyl); 5.28 (s, 2H, NCH₂); 4.24 (q, 2H, COOCH₂CH₃); 1.27 (t, 3H, COOCH₂CH₃); MS (FAB⁺, GT) m/z 326 [M+H]⁺.
- **2-N-(Acetyl)-9-(Ethoxycarbonylmethyl)guanine 2e.** Yield: 25%, Rf = 0.34 (CHCl₃/MeOH)(90/10, v/v), 1 H NMR δ : 12.12 (s, 1H, NHAc); 11.61 (s, 1H, NH-3); 8.15 (s, 1H, H-8); 5.22 (s, 1H, NCH₂); 4.18 (q, 2H, COOCH₂CH₃); 2.51 (s, 3H, CH₃CO); 1.22 (t, 3H, COOCH₂CH₃); MS (FAB⁺, GT) m/z 280 [M + H]⁺.
- **2-N-(Acetyl)-7-(Ethoxycarbonylmethyl)guanine 2e'.** Yield: 18%, Rf = 0.52 (CHC1₃/MeOH)(90/10, v/v), 1 H NMR δ : 12.12 (s, 1H, NHAc); 11.62 (s, 1H, NH-3); 8.15 (s, 1H, H-8); 5.21 (s, 1H, NCH₂); 4.17 (q, 2H, COOCH₂CH₃); 2.20 (s, 3H, CH₃CO); 22 (t, 3H, COOCH₂CH₃); MS (FAB⁺, GT) m/z 280 [M + H]⁺.
- **2-N-(Acetyl)-9-(Ethoxycarbonylmethyl)guanine 2g.** Yield: 67%, Rf = 0.80 (CHCl₃/MeOH)(90/10, v/v), ¹H NMR δ : 10.80 (s, 1H, NH-3); 8.70 (s, 1H, H-8); 7.35–760 (m, 10H, phenyl); 5.26 (s, 1H, NCH₂); 4.20 (q, 2H, COOCH₂CH₃); 2.58 (s, 3H, CH₃CO); 1.26 (t, 3H, COOCH₂CH₃); MS (FAB⁺, GT) m/z 555 [M+H]⁺.

ACKNOWLEDGMENTS

Financial support by the Ministry of National Education (PARS: Chim 053/1998) and by the cooperation CNRST (Morocco)/DFG (Germany) are gratefully acknowledged. We thank Professor J. L. Abbud (CSIC, IQFR, Madrid, Spain) for his interest in this work, and for reviewing this manuscript. We would also like to thank the referees for their comments.

REFERENCES

1. Nielson, P.E.; Egholm, M.; Berg, R.H.; Buchardt, O. Sequence-selective recognition of DNA strand displacement with a thymine-substituted poliamide. Science **1991**, *254*, 1497–1500.

114 Alahiane et al.

2. a) Good, L.; Nielsen, P.E. La reference 2a: Progress in developing PNA as a gene-targeted drug. Antisense and Nucleic Acid Drug Dev. 1997, 7, 431–437; b) Nielson, P.E.; Haaima, G. Peptide nucleic acid. A DNA mimic with a pseudopeptide backbone. Chem. Soc. Rev. 1997, 73–78.

- 3. Knudsen, H.; Nielson, P.E. Application of peptide nucleic acid in cancer therapy. Anti-Cancer Drugs 1997, 8, 113–118; and references cited therein.
- 4. a) Clark, J.H. Catalysis of Organic Reactions by Supported Inorganic Reagents; VCH publisher, Inc.: NY, 1994; b) Tateiwa, J.; Horiuchi, H.; Jemura, S. Ce³⁺-exchanged Montmorillonite (Ce³⁺-Mont) as a useful substrate-selective acetalization catalyst. J. Org. Chem. 1995, 60, 4039–4043; c) Sebti, S.; Saber, A.; Rhihil, A. Phosphate naturel et phosphate trisodique: Nouveau catalyseurs solides de la condensation de knovenagel en milieu Heterogene. Tetrahedron Lett. 1994, 35, 9399–9400 and references cited therein.
- Lazrek, H.B.; Rochdi, A.; Kabbaj, Y.; Taourirte, M.; Sebti, S. Zinc chloride doped natural phosphate as 1,3-dipolar cycloaddition catalyst. Synth. Comm. 1999, 29, 1057–1063. Note: Chemical analyses of natural phosphate (NP), (%): CaO (55.94), P₂O₅ (35.07), F⁻ (4.28) SiO₂ (2.13), SO₃ (1.59), CO₂ (1.10), Na₂O (0.50), MgO (0.39), AL₂O₃ (0.30), Fe₂O₃ (0.17), K₂O (0.03), Cl₂ (300 ppm), Zn (218 ppm), Cr (117 ppm), Cu (31 ppm) and Cd (16 ppm).
- Alahiane, A.; Rochdi, A.; Taourirte, M.; Redwane, N.; Sebti, S.; Lazrek, B.H. Natural phosphate as lewis acid catalyst: A simple and convenient method for acyclonucleoside synthesis. Tetrahedron Lett. 2001, 42, 3579–3581.
- Blass, B.E.; Burt, T.M.; Liu, S.; Portlock, D.E.; Swing, E.M. A facile KF/Al₂O₃ mediated, selective alkylation of benzodiazepin-2,5-diones. Tetrahedron Lett. 2000, 41, 2063–2066; and references cited therein.
- 8. Duehohm, K.L.; Egholm, M.; Behrens, C.; Christensen, L.; Hansen, H.F.; Vulpins, T.; Petersen, K.H.; Berg, R.H.; Nielsen, P.E.; Buchardt, O. Synthesis of peptide nucleic acid monomers containing the four natural nucleobases: Thymine, cytosineadenine, and guanine and their oligomerization. J. Org. Chem. 1994, 59, 5767–5773.
- 9. Robins, M.J.; Zou, R.; Guo, Z.; Wnuk, S.F.J. Nucleic acid related compounds. 93. A solution fohistoric problem of regioselective sugar-base coupling tProduce 9-glycosylguanine of 7-glycosylguanines. J. Org. Chem. **1996**, *61*, 9207–9212.

Received June 12, 2002 Accepted December 16, 2002